- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Campbell, Mark (1)
-
Chao, Wei-Lun (1)
-
Chen, Junan (1)
-
Chen, Xiangyu (1)
-
Diaz, Carlos A (1)
-
Emond, Marc (1)
-
Hariharan, Bharath (1)
-
Luo, Katie Z (1)
-
Monica, Josephine (1)
-
Nino, Jose (1)
-
Wang, Yan (1)
-
Weinberger, Kilian Q (1)
-
Xia, Youya (1)
-
You, Yurong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Advances in perception for self-driving cars have accel- erated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety re- quirement, these perceptual systems must operate robustly under a wide variety of weather conditions including snow and rain. In this paper, we present a new dataset to enable robust autonomous driving via a novel data collection pro- cess — data is repeatedly recorded along a 15 km route un- der diverse scene (urban, highway, rural, campus), weather (snow, rain, sun), time (day/night), and traffic conditions (pedestrians, cyclists and cars). The dataset includes im- ages and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS to establish correspon- dence across routes. The dataset includes road and object annotations using amodal masks to capture partial occlu- sions and 3D bounding boxes. We demonstrate the unique- ness of this dataset by analyzing the performance of base- lines in amodal segmentation of road and objects, depth estimation, and 3D object detection. The repeated routes opens new research directions in object discovery, contin- ual learning, and anomaly detection. Link to Ithaca365: https://ithaca365.mae.cornell.edu/more » « less
An official website of the United States government

Full Text Available